Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 18(4): e0280566, 2023.
Article in English | MEDLINE | ID: covidwho-2301244

ABSTRACT

Lifetime experiences and lifestyle, such as education and engaging in leisure activities, contribute to cognitive reserve (CR), which delays the onset of age-related cognitive decline. Word-finding difficulties have been identified as the most prominent cognitive problem in older age. Whether CR mitigates age-related word-finding difficulties is currently unknown. Using picture-naming and verbal fluency tasks, this online study aimed to investigate the effect of CR on word-finding ability in younger, middle-aged, and older adults. All participants were right-handed, monolingual speakers of British English. CR for both the period preceding and coinciding with the COVID-19 pandemic was measured through years of education and questionnaires concerning the frequency of engagement in cognitive, leisure, and physical activities. Linear mixed-effect models demonstrated that older adults were less accurate at action and object naming than middle-aged and younger adults. Higher CR in middle age predicted higher accuracies for action and object naming. Hence, high CR might not only be beneficial in older age, but also in middle age. This benefit will depend on multiple factors: the underlying cognitive processes, individual general cognitive processing abilities, and whether task demands are high. Moreover, younger and middle-aged adults displayed faster object naming compared to older adults. There were no differences between CR scores for the period preceding and coinciding with the pandemic. However, the effect of the COVID-19 pandemic on CR and, subsequently, on word-finding ability might only become apparent in the long term. This article discusses the implications of CR in healthy ageing as well as suggestions for conducting language production studies online.


Subject(s)
COVID-19 , Cognitive Reserve , Healthy Aging , Middle Aged , Humans , Aged , Pandemics , Neuropsychological Tests , COVID-19/epidemiology , Brain
2.
Microbiome ; 11(1): 46, 2023 03 09.
Article in English | MEDLINE | ID: covidwho-2256593

ABSTRACT

BACKGROUND: Infections with SARS-CoV-2 have a pronounced impact on the gastrointestinal tract and its resident microbiome. Clear differences between severe cases of infection and healthy individuals have been reported, including the loss of commensal taxa. We aimed to understand if microbiome alterations including functional shifts are unique to severe cases or a common effect of COVID-19. We used high-resolution systematic multi-omic analyses to profile the gut microbiome in asymptomatic-to-moderate COVID-19 individuals compared to a control group. RESULTS: We found a striking increase in the overall abundance and expression of both virulence factors and antimicrobial resistance genes in COVID-19. Importantly, these genes are encoded and expressed by commensal taxa from families such as Acidaminococcaceae and Erysipelatoclostridiaceae, which we found to be enriched in COVID-19-positive individuals. We also found an enrichment in the expression of a betaherpesvirus and rotavirus C genes in COVID-19-positive individuals compared to healthy controls. CONCLUSIONS: Our analyses identified an altered and increased infective competence of the gut microbiome in COVID-19 patients. Video Abstract.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , SARS-CoV-2/genetics , Multiomics
3.
Water ; 13(21):3018, 2021.
Article in English | MDPI | ID: covidwho-1488810

ABSTRACT

Monitoring SARS-CoV-2 in wastewater has shown to be an effective tool for epidemiological surveillance. More specifically, RNA levels determined with RT-qPCR have been shown to track with the infection dynamics within the population. However, the surveillance of individual lineages circulating in the population based on genomic sequencing of wastewater samples is challenging, as the genetic material constitutes a mixture of different viral haplotypes. Here, we identify specific signature mutations from individual SARS-CoV-2 lineages in wastewater samples to estimate lineages circulating in Luxembourg. We compare circulating lineages and mutations to those detected in clinical samples amongst infected individuals. We show that especially for dominant lineages, the allele frequencies of signature mutations correspond to the occurrence of particular lineages in the population. In addition, we provide evidence that regional clusters can also be discerned. We focused on the time period between November 2020 and March 2021 in which several variants of concern emerged and specifically traced the lineage B.1.1.7, which became dominant in Luxembourg during that time. During the subsequent time points, we were able to reconstruct short haplotypes, highlighting the co-occurrence of several signature mutations. Our results highlight the potential of genomic surveillance in wastewater samples based on amplicon short-read data. By extension, our work provides the basis for the early detection of novel SARS-CoV-2 variants.

SELECTION OF CITATIONS
SEARCH DETAIL